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Abstract Photographic volumes have been increasingly used in medical and biological researches in recent
years. The original colors kept in photographic volumes present great opportunities to capture a rich set of
information within the dataset for a wide variety of data analysis and visualization applications. Despite years of
research, an interactive and user-friendly transfer function is still lacking for photographic volume visualization.
The difficulty lies in how to map colors to a space that is convenient and intuitive for users to interactively
classify features, i.e. specifying opacities for voxels. In this paper, we propose a color-based transfer function for
intuitive opacity specification of photographic volumes. The color-based transfer function intelligently maps the
colors from 3D to 1D, resulting in 256 representative colorswhich preserve the original colors to the maximum
extent. Users can directly classify voxels based on these representative colors similar to the conventional 1D
transfer function. Experiments are performed to evaluate the effectiveness of the proposed method, and also
demonstrate the intuitiveness and flexibility of the proposed method.

Keywords Photographic volume· Transfer function· Color mapping

1 Introduction

With the recent advance of cryosection techniques, photographic volumes have been increasingly used in med-
ical and biological researches. Modern cryo-imaging systems have allowed us to capture ultra-high resolution
realistic color images, for example, 55GB volume data of a whole mouse (Roy et al. 2009), the Visible Human
Project (VHP) at the National Library of Medicine (Spitzer et al. 1996) and the Chinese Visible Human Project
(CVHP) (Zhang et al. 2006). In contrast to the volumes captured by traditional instruments, such as CT, PET
and MRI, photographic volumes preserve original colors of the subject. With the availability of photographic
volumes, highly realistic volume visualization can be generated by sampling the colors in the volume without
additional color transfer functions. However, specifyingopacity for photographic volumes becomes harder due
to 3D colors, instead of 1D scalar values in scalar volumes.

Different kinds of transfer functions are designed to simplify the tedious data classification and visual prop-
erty mapping process. Generally, a graphic design interface is provided together with the distribution of various
useful properties, and this is much more intuitive and flexible for users than just tuning several abstract and
non-linear parameters. However, it is not easy to create an interactive opacity specification approach for pho-
tographic volumes due to the interaction difficulty of the 3Dcolor space. Although several excellent transfer
function design methods have been proposed for dealing withphotographic volumes, they face the limited clas-
sification number or the lack of interactivity. Most of theseare global opacity specification approaches, i.e. the
opacities of all voxels can only be changed simultaneously (Ebert et al. 2002; Gargesha et al. 2009). Researchers
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have also proposed an interactive method to show different features with different opacities (Takanashi et al.
2002). But the interaction is performed in a derived 3D space, which is not convenient and intuitive for gener-
al users due to its abstract meaning. Thus, an intuitive and easy-to-use interactive approach is still absent for
photographic volumes.

We propose a color-based 1D opacity transfer function for photographic volumes. As the dimension goes
lower, the degree of freedom and the complexity of user interaction decrease. 1D transfer function is easy to
understand and convenient for user interaction. In order todevelop a 1D transfer function for photographic
volumes, the difficulty lies in how to create the axis of the transfer function. So we propose a color mapping
approach to map colors from 3D to 1D while maximizing the color preservation. 256 representative colors,
which approximate the original colors to their best, are selected to form a color bar that can serves as the
axis of the proposed 1D transfer function. Similar to the conventional 1D transfer function for scalar volume
visualization, users can directly classify voxels based onthe color bar. By taking the original colors of features
as reference, the representative colors make opacity manipulation much more intuitive.

2 Related Work

Transfer function design has drawn a lot of attention. Besides the commonly used 1D transfer function based on
scalar values, a large number of meaningful transfer functions have been proposed for scalar volumes. Kindl-
mann et al. proposed a semi-automatic generation of both 1D and 2D transfer functions based on scalar value
and gradient magnitude (Kindlmann and Durkin 1998; Pfister et al. 2001). Roettger et al. (2005) clustered the
2D histogram by considering the spatial connectivity of thehistogram entries and created spatialized transfer
function. Sereda et al. (2006) proposed the LH transfer function to detect feature boundaries based on a his-
togram generated by following the gradient directions. Correa and Ma (2008, 2011) applied size and visibility
to classify features of interest. Ruiz et al. (2011) provided a method to generate automatic transfer functions
based on information divergences. Guo et al. (2011) automatically computed transfer functions by analyzing
the user interaction on the visualization result.

In photographic volume visualization, most of the researches have also been devoted to transfer function
design. Ebert et al. proposed color distance gradient and used it in their transfer functions (Ebert et al. 2002).
They set opacity to one of the color components, color distance gradient magnitude or color distance gradient
dot product. The opacity setting is fixed once a transfer function is selected, so that users can hardly interact
with it. Gargesha et al. (2009) combined color and gradient feature detectors to generate the opacity transfer
function, providing a user interface for selecting different feature detectors. However, users have to figure out
the composition of the RGB components in their mind according to features of interest, making the interaction
not intuitive enough. Takanashi et al. introduced an interactive classification technique called ISpace by using
Independent Component Analysis (ICA) to transform the original data into a new space (Takanashi et al. 2002).
Users can classify data by clipping data histogram in the ICAspace or by specifying several 1D transfer func-
tions, one for each ICA axis. But interactive clipping in 3D space is not an easy task and the derived axes are
not as intuitive as those of the original color space. So we create an axis with colors selected from the original
data set and establish a color-based 1D transfer function.

Mapping colors from 3D to 1D is much like the decolorization problem. In general, decolorization can be
performed either locally or globally. Local methods apply different mapping functions in different local regions,
trying to preserve as much contrast as possible in the resultgrayscale image (Gooch et al. 2005). This is not
suitable for our requirement, as different mapping functions would map the same colors from different local
regions to different results. As for global methods, Lu et al. (2012) proposed a very fast yet effective decol-
orization approach. They reached a robust solution with a simple linear parametric grayscale model. Song et al.
(2013) extended this work and proposed a multi-scale contrast preservation strategy, which chooses channel
weights depending on specific images to maximally preserve the original color contrast. However, in our case,
this kind of simple linear parametric grayscale model may result in an uneven histogram distribution. On the
other word, the result 1D space may not be efficiently used dueto the empty regions in the result histogram. So
we propose a global non-linear color mapping method.
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Fig. 1 The pipeline of our color mapping approach.

3 Color-Based Transfer Function

In order to develop an interactive transfer function for photographic volumes, it is necessary to map the voxel
values to a space that is convenient for user interaction. The reduction in the dimension of interaction space can
reduce the degree of freedom and the complexity of user interaction. So the 1D transfer function is easy to use
and widely used in volume visualization. We try to map colorsto 1D and pick out a sequence of representative
colors that can serve as an axis of the 1D transfer function. With our color mapping method, same colors should
map to the same value, ensuring not to separate voxels of a same feature. The representative color sequence
should satisfy the color perceptual continuity. Gatheringsimilar colors together can simplify the work spent on
feature classification. But through a 3D-to-1D dimensionalreduction, the information loss of the original data is
unavoidable. We focus our work on how to adjust the color mapping strategy to reduce the information loss and
achieve a better color preservation. Obviously, the color mapping problem is similar to decolorization in some
degree. While a decolorization method maps colors to grayscale values and focuses on contrast preservation,
we need our color mapping method to produce a sequence of representative colors which preserves the color of
the original data to its best. The pipeline of our color mapping method is shown in Fig. 1 and each step will be
described in detail in this section.

3.1 Non-linear Color Mapping

To construct a 1D transfer function, we need to select an ordinal property as the axis. For photographic volumes,
color is one of the most intuitive attribute to serve as the axis. User can easily establish a connection between
colors and features. But there are too many colors to be listed along the axis in the user interface. So we should
map the colors to 1D first and then select some representativecolors for the color-based transfer function.

Linear mapping preserves color consistency, which means same colors in different voxels are mapped to the
same position in the 1D axis. So we choose to use the general linear composition of colors for color mapping,
as shown in Equation 1,

C = wr ∗ r + wg ∗ g + wb ∗ b,

wr + wg + wb = 1,

wr ≥ 0, wg ≥ 0, wb ≥ 0,

(1)

wherewr, wg andwb are weights of the three components(r, g, b) of a color and how to select these weights
will be discussed in the next subsection. With the linear mapping in Equation 1, each color that appears in the
volume data can be mapped onto the 1D axis. After the mapping is performed for all colors, we divide the axis
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(a) (b) (c)

(d) (e) (f)

Fig. 2 Histograms generated by different color mapping methods. The associated color bar is painted at the bottom of each figure. (a) U
component in CIELUV color space. (b) Hue component in HSV color space. (c) K-Means clustering. (d) Conventional rgb2gray. (e) The
linear mapping with weights selected by the proposed method. (f) The proposed non-linear mapping method.

into 256 segments. In another word, the colors are separatedinto 256 sequential bins uniformly according to
theirC values. For each bin, one color is selected from all the colors in it and serves as the representative color
of the bin. The representative color should minimize the color loss when it is used to substitute for others. The
number of bins here is chosen to be 256, as the index of these representative colors can be represented by a byte
(8 bits).

Obviously, this simple mapping may not achieve a satisfactory result. The colors in the photographic volume
may be clustered in one region or several regions and do not cover the entire color space, so there may be some
empty bins after the linear mapping process. The histogramsgenerated by several different color mapping
methods are shown in Fig. 2. Fig. 2(a), (b), (d) and (e) are results of linear mapping methods. By comparing
these histograms, we can see that the histograms generated by linear methods have a large part of empty bins.
Obviously the mapped 1D space is not effectively used. On theother hand, many quite different colors may be
mapped to the same bin. Apparently, we should take out part ofthe quite different colors from one bin and put
them into an empty bin. In this way, the bins that are still empty after the linear mapping can be made better use
of and then more colors can be preserved. So after performingthe linear mapping, we introduce a non-linear
mapping adjustment strategy to further make use of empty bins.

Empty bins are removed from the bin sequence. For each non-empty bin, considering colors in it may be
greatly different, the variance of the colors is calculated. It should be noted especially that, to calculate the
variance of a color set, we need to measure the difference between colors. It is known that the RGB color
space is not perceptually uniform but the CIELUV color spaceis thought to be perceptually uniform. It means
that equal distances in the CIELUV color space correspond toequal perceptual differences. So the Euclidean
distance in this color space can be used to measure the perceptual difference between colors. Let∆E(c1, c2)
denote the Euclidean distance between colorc1 and colorc2 in the CIELUV color space. Then the variance of
the binCi can be calculated with

V ariancei =
1

ni

ni∑

k=1

∆E(ck,µ), (2)

whereni is the number of the colors inCi. The mean colorµ is calculated by the arithmetic mean of all the
color vectors inCi. The variance ofCi is calculated as the average Euclidean distance from each color in Ci to
µ, which can reflect the degree of variability of the colors in the bin.

The binCm with the largest variance is singled out to split as it has themaximum diversity of the colors.
K-Means clustering is applied to the colors inCm to partition them into two clusters. We separate the two
clusters of colors into two new bins. Then for each of the two new bins, we find the bin which has the most
similar representative color to that of the new bin in the binsequence and insert the new bin to its left or right
according to the representative color distances to both sides. This process is repeated until we get a sequence of
256 non-empty bins. Fig. 2(f) shows the result generated by performing the non-linear adjustment on Fig. 2(e).
More colors are filled into the color bar and no empty bins remain. This makes a better color preservation. As
to Fig. 2(c), which is generated by clustering colors into 256 clusters in the CIELUV color space with K-Means
clustering, although it can also make full use of the mapped 1D space, colors selected by K-Means method
cannot be easily sorted into a sequence as good as ours. The color bar generated by our non-linear mapping is
more consecutive in visual perception and thus it can betterfacilitate the classification work.
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3.2 Parameter Optimization

Having the color mapping approach, we focus on how to optimize it. The best strategy in our opinion is to select
the most suitable parameters for the color mapping according to the processed data set, so that the color loss
during the mapping process can be reduced as much as possible. In the proposed non-linear color mapping, the
parameters are three weightswr, wg andwb used for the linear combination in Equation 1. We can discretize
wr, wg andwb in the range of [0,1] and select a best combination of the three weights. Song et al. (2013) found
that the results would not change too much when slightly varying the weightswr , wg andwb. It is enough to set
the discretization interval to 0.1. When the three parameters are discretized in the range [0, 1] with the interval
0.1, due to the constraint in Equation 1, we actually get 66 parameter candidates that are uniformly sampled
from a plane in thewr-wg-wb space. Finer discretization is still considerable when accurate results are needed.

In order to compare different candidate combinations of thethree parameters, we need to find a way to
evaluate a specified group of parameters. Given a group of parameters, each color can be mapped to one of the
256 representative colors that are selected by the non-linear color mapping method mentioned above. A new
color volume data can be established by mapping the color of each voxel in the original volume data to its
corresponding representative color. Suppose that the input volume data isV and the mapped volume data is
Vm, the difference between them can be obtained by a voxel wise comparison. Taking the multi-scale color-
preservation into consideration, we introduce the joint bilateral filtering (Petschnigg et al. 2004), which is also
known as the cross bilateral filter (Eisemann and Durand 2004). By varying the spatial parameter and the range
parameter used in bilateral filter, we can evaluate the colormapping parameters in different scales.

The joint bilateral filtering can be defined as follows. LetV (p) be the color of the voxel at positionp,
cf (p) be the filtered color andVg be the volume data used to compute weights in the range kernel, which is
also mentioned as guidance volume data in the following, then we have,

ω(p, q) = Gσs
(‖p− q‖)Gσr

(∆E(Vg(p),Vg(q))),

cf (p) =

∑
q∈Ωp

ω(p, q)V (p)
∑

q∈Ωp
ω(p, q)

,
(3)

whereq is a position in the neighborhoodΩp of p, Gσs
is the spatial filter kernel for measuring the spatial

similarity andGσr
is the range filter kernel measuring the color similarity. The bilateral filtering is applied

to the original volumeV and generates the filtered volumeV f . Meanwhile, the filter is applied toV with the
mapped volumeVm as the guidance, and generates the filtered volumeV f

m . By summing up the color difference
between the colors of each pair of corresponding voxels atp, we can get the matching cost between the two
filtered volumes,

δ =
∑

p∈V

∆E(V f (p),V f
m (p)). (4)

The matching cost stands for the color preservation quality. It can be used as a metric of the validation of a
color mapping method. By quantizing the parameter space of bilateral filtering, which involvesσs andσr, we
can measure the color preservation in different spatial andrange scales. According to Song et al. (2013), we
quantize the parametersσs as [0.1, 0.2, 0.3, ..., 1.0] andσr as [0.1, 0.5, 1.0, 2.0]. For each pair of(σs, σr),
matching costs are calculated for the 66 parameter candidates, and the candidate with the local minimum value
in its parameter space is voted. After all pairs of(σs, σr) are traversed, the parameter candidate that has the
most votes is picked out as the selected parameter for the final color mapping.

3.3 Color-Based Transfer Function

Once the color mapping has been completed, we can construct agraphic interface which is similar to the
widely used scalar based 1D transfer function widget. The representative colors produced by the non-linear
color mapping is listed in the horizontal axis and the vertical axis stands for the opacity value. For a better
perception of each value listed in the horizontal axis, we draw a color bar using the representative colors at the
corresponding location. Because the colors lying in the horizontal axis is related to the colors in the visualization
result, with the present of the color bar, it becomes more intuitive for user interaction. Users do not need to
think much about the correspondence between the structuresin the result image and the feature regions in the
transfer function. All they need to do is finding the featuresof interest in the visualization result and adjust
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the opacity curve of the regions with similar colors in our transfer function. A human chest rendered with the
proposed color-based transfer function is shown in Fig. 3. The associated transfer functions are listed below the
visualization results. In this data set, the colors of muscle tend to be dark and red while the colors of humerus
and part of the ribs seem brighter. Fig. 3(a) gives a hybrid visualization of these tissues. By decreasing the
opacities of the dark and red areas, which are used to visualize muscles in Fig. 3(c), the humerus and part of the
ribs can be recognized with the help of our transfer functionas shown in Fig. 3(b).

(a) (b) (c)

Fig. 3 Human chest rendered with our color-based transfer function.

4 Result

Experiments are performed to evaluate the proposed color mapping method. Given a color mapping method,
we generate a mapped volume by replacing each voxel with its mapped color value. Then the average matching
cost is calculated by per-voxel averaging the sum of the matching costs in different scales,

δ =
∑

σs

∑

σr

δ(σs, σr)/N, (5)

whereN is the number of voxels.
By measuring the average matching cost, we can evaluate the variation caused by color mapping. The lower

the average matching cost is, the better the mapping method preserves the original colors. In our experiments,
the average matching cost is calculated with 7 color mappingmethods on 4 data sets. The results are shown in
Table 1. The CIELUV(U) method is performed by mapping colorsto 1D according to their U components in
CIELUV color space. Similarly, the HSV(H) method maps colors according to their hue values in HSV color
space. The rgb2gray method applies the linear mapping used in Matlab. The K-Means method is performed by
clustering the colors into 256 clusters in the CIELUV color space. We also conduct a group of experiments by
adding the proposed non-linear adjustment to rgb2gray (noted with +NL in Table 1) and a group of experiments
by removing the non-linear adjustment from the proposed method (noted with -NL in Table 1). By doing this
we can see the validity of the mapping parameters selected byour method. As we can see from Table 1, for
each of the four data sets, the average matching cost of the proposed method is minimum among these mapping

Table 1 The Average Matching Costs of Different Mapping Methods

Method Mouse Chest Leg Head

CIELUV(U) 0.0912675 0.1263410 0.0808967 0.0485085
HSV(H) 0.0849311 0.0759441 0.0666765 0.0316832
rgb2gray 0.0131045 0.0128178 0.0129036 0.0059713
rgb2gray(+NL) 0.0134504 0.0125809 0.0128129 0.0059282
K-Means 0.0518242 0.0391509 0.0377042 0.0170200
Proposed method(-NL) 0.0114841 0.0117594 0.0106860 0.0095955
Proposed method 0.0107069 0.0109380 0.0101340 0.0050037
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(a) (b) (c)

(d) (e) (f)

Fig. 4 Visualization results of human head. (a), (b) and (c) are rendered with the three color-based transfer functions in (d) respectively. (e)
and (f) are rendered by combining the bottom two color-basedtransfer functions with a simple gradient-magnitude-based transfer function.

methods. It means that the color loss caused by the color mapping process is minimized with our method. So the
representative colors that we choose can represent the original data values better. On the other hand, the color
bar generated by the proposed method is continuous in color perception, as shown in Fig. 2(f). This ensures that
similar colors will not be divided to disperse areas and improves the efficiency of opacity specification, making
the proposed transfer function more user-friendly.

Fig. 4 shows a group of visualization results of the human head data set. Different features are blended with
different opacities in Fig. 4(a). We can see the brain tissue, the teeth, the sinus, the muscles and part of the skin.
The color-based transfer function can reduce the blindnessduring data exploration. By decreasing the opacities
of the dark green area and the light yellow area, we can removethe sinus, the brain and the teeth, getting the
result in Fig. 4(b). Further removing the red area, only the blood vessels and part of the skin, whose colors are
close to black, can be seen. Due to the data acquisition process, skins cover a large range of colors. It cannot
be easily removed with the color-based transfer function only. Fortunately, the proposed transfer function can
be combined with other transfer functions. By applying the color-based transfer functions used in Fig. 4(b) and
Fig. 4(c) in multiplicative combination with a transfer function based on gradient magnitude, which simply sets
the opacity of high gradient magnitude area to zero, we can remove the skin and get the results in Fig. 4(e) and
(f). As a 1D transfer function, the proposed method is easy tounderstand and convenient for user interaction.
With the help of the color bar, feature classification becomes much more intuitive due to the correspondence
between color and feature.

We make a compare between the visualization results rendered with the proposed color-based transfer func-
tions and those rendered with the method of Ebert et al. (2002). The opacity transfer function used in their
method isrenderedopacity = (voxel opacity ∗ scalar)exponent, wherescalar is a coefficient to control
the overall opaqueness of the volume and is set to a constant value in our experiments. In Fig. 5(a) and (b),
voxel opacity is set to color distance gradient magnitude. In Fig. 5(a), when the exponent is set to 0.6, different
features can be well blended with the opacity determined by the color distance gradient. But when the exponent
increases to 0.7, the opacities of all features decreases simultaneously, making the result image pale and dim, as
shown in Fig. 5(b). The transfer functions they proposed arenot able to highlight a specified feature. With the
help of our color-based transfer function, we can get a result that is almost the same as theirs. At the same time,
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(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Fig. 5 Volume rendering of the human leg data set. Opacities in (a) and (b) are determined by the transfer function based on the color
distance gradient, with the exponent equal to 0.6 and 0.7 respectively. Opacities in (c), (d) and (e) are specified by the proposed color-based
transfer function. (f) and (g) are rendered with transfer functions based on color and gradient feature detectors. (h),(i) and (j) are rendered
with representative colors instead of original colors withthe proposed transfer function.

different features can be separately rendered by interactively setting a large opacity value to the corresponding
area and decreasing the opacity of the rest. For example, once we want to see the muscle tissue, the region in
red in the color-based transfer function is selected and setto a large opacity value, as shown in Fig. 5(e). By
removing the muscle tissue from Fig. 5(c), we can get the volume rendering of the fat and the bone whose
colors are close to light yellow, as demonstrated in Fig. 5(d). As for the method based on color and gradient
feature detectors proposed by Gargesha et al. (2009), similar results can be got with careful parameter tuning,
as shown in Fig. 5(f) and (g). But the color feature detector in their method is not as flexible as the proposed
transfer function. For example, although fat and bone tissues can be detected with the yellow color detector
1.0 ∗ R + 1.0 ∗ G + 0.0 ∗ B, features in red are also detected by this detector, as shownin Fig. 5(g). Result
such as Fig. 5(d) cannot be easily got with their method. The proposed color-based transfer function surpasses
previous methods in flexibility and ease of use. On the other hand, in our implementation, mapped volume data
can also be visualized with the proposed transfer function,as shown in Fig. 5(h), (i) and (j). Although the results
are closed to those of the original data in Fig. 5(c), (d) and (e), by comparing to Fig. 5(e) we can see that some
detail colors are missing in Fig. 5(j). However, the size of mapped volume data is only one third of the original
data. Therefore we can use mapped volume to get a quick overview when memory is not enough, but not for
serious situations.

Another group of comparison is performed on the digimouse data set (Dogdas et al. 2007). The results are
shown in Fig. 6. The results in the top two rows are rendered with the method of Ebert et al. (2002) and the
results in the last row is created with the proposed method. Fig. 6(a), (b) and (c) setvoxel opacity to color
distance gradient magnitude. Fig. 6(d), (e) and (f) setvoxel opacity to the value of U component in CIELUV
color space. When increasing the exponent, features in the results of both of these two transfer functions fade out
gradually. Although meaningful results can be got, the opacity of a specified feature cannot be solely set due to
the global transfer function. Thus different features cannot be separated effectively. The proposed color-based
transfer function can get a result that is similar to theirs,such as Fig. 6(g). Furthermore, we can distinguish
features that cannot be easily selected with their method, such as the organs in Fig. 6(h) and the heart and the
blood vessels in Fig. 6(i). In the last two results, we set a low opacity to the mouse body designedly to make
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Fig. 6 Volume rendering of the digimouse data set. Opacities in (a), (b) and (c) are determined by the transfer function based onthe color
distance gradient, with the exponents equal to 0.5, 0.6 and 0.7 respectively. Opacities in (d), (e) and (f) are determined by the transfer
function based on CIELUV U color component. Exponents equalto 0.5, 1.0 and 1.5 respectively. Opacities in (g), (h) and (i) are set with
the proposed color-based transfer function.

it available as background. Our method is flexible enough to set different opacities to different features inten-
tionally, making it more useful in data exploration. Aided by the color bar user can classify features according
to their original colors. This makes the exploration process much more intuitive and reduces the work spend on
trial-and-error.

5 Conclusion

In this paper, we have proposed a novel transfer function design method for photographic volumes. An intuitive
color-based 1D transfer function is developed based on a non-linear color mapping strategy. This transfer func-
tion can be used alone or can be combined with other transfer functions to generate desired visualization results.
Experiment results show the effectiveness of our transfer function. The main limitation of our proposed method
is that the parameter optimization costs a lot of time. Most of the time is consumed by the bilateral filtering.
For example, while the bilateral filtering was implemented with OpenCL, it took almost 3 hours to perform
the entire color mapping for the head data set on a computer with Intel i5-3450 CPU and NVIDIA GTX 660
GPU. Fortunately, for a given volume data, the nonlinear color mapping only need to be performed once in the
preprocessing stage, and then we can store the result for later use. To deal with the color loss caused by color
mapping, we can change the number of representative colors.The more representative colors we use, the more
accurately they represent the original data. But for a synthesized volume dataset which contains a great many of
colors, more representative colors are not helpful. The color bar generated will be less smooth and thus it will be
less friendly for user interaction. Another problem is thatcolor itself may not be a sufficiently distinct attribute
to distinguish between features. To further enhance the classification ability of our transfer function, we will
attempt to extend it with other attributes such as texture properties (Caban and Rheingans 2008). We hope more
intuitive and user-friendly transfer functions would be developed for photographic volumes in future.
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